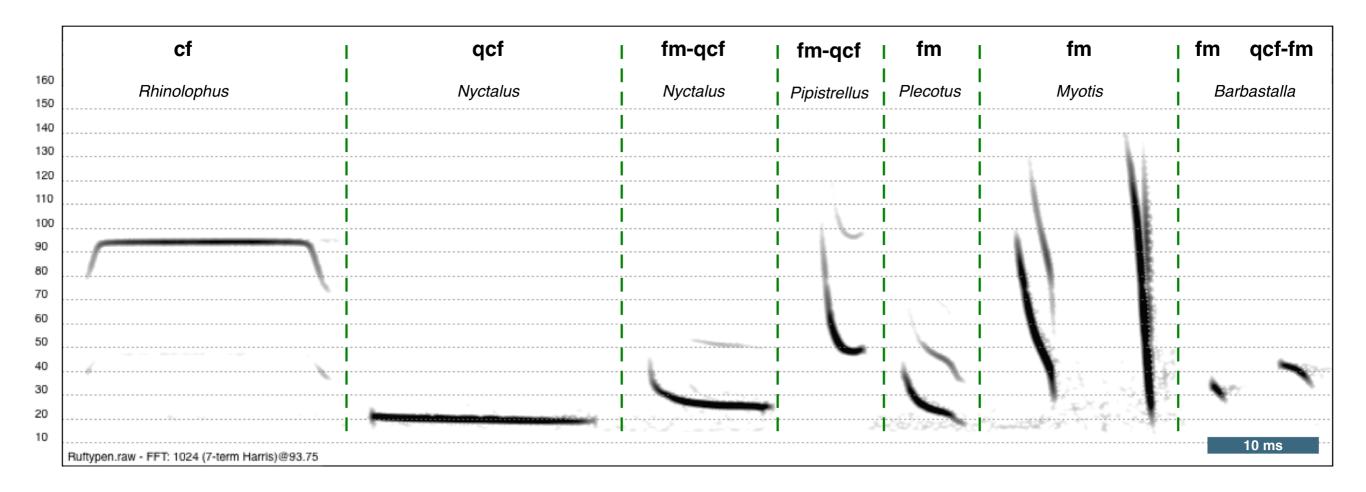


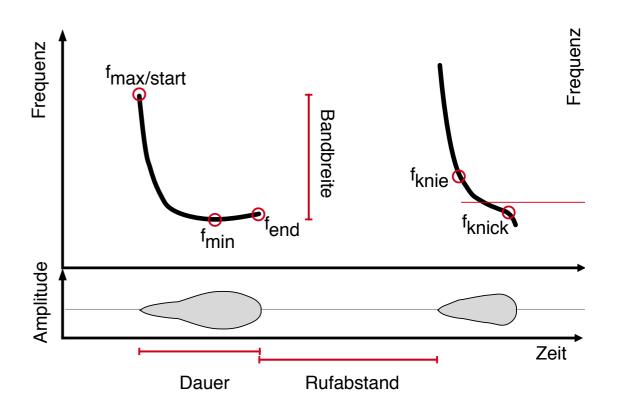
KI - FLUCH ODER SEGEN?

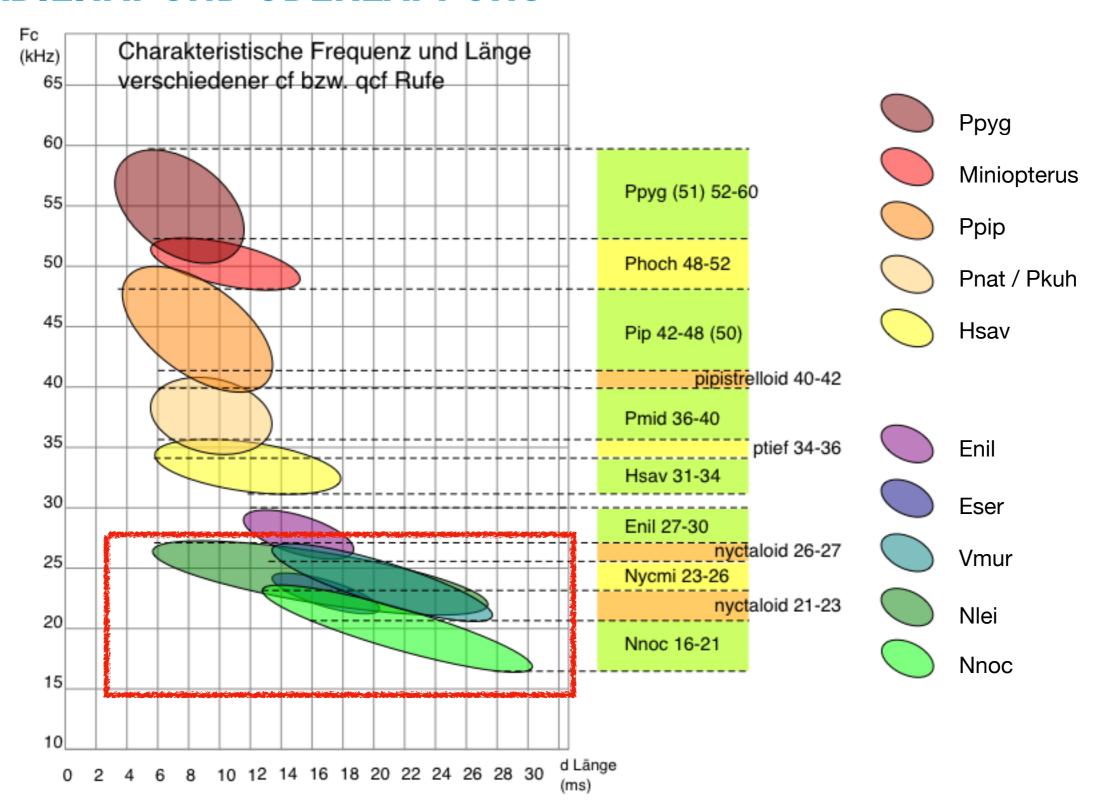
KÜNSTLICHE INTELLIGENZ VS HUMAN BRAIN POWER



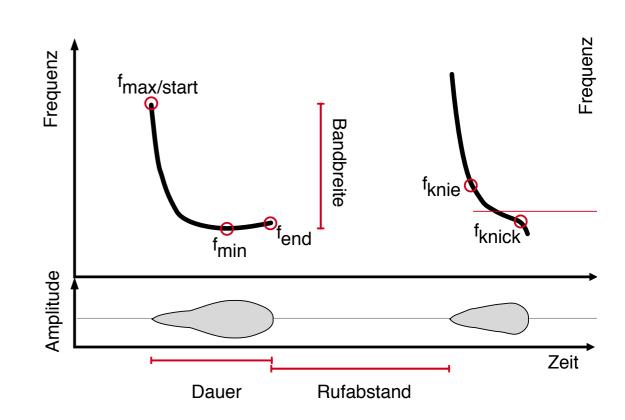
RUFE BESTIMMEN

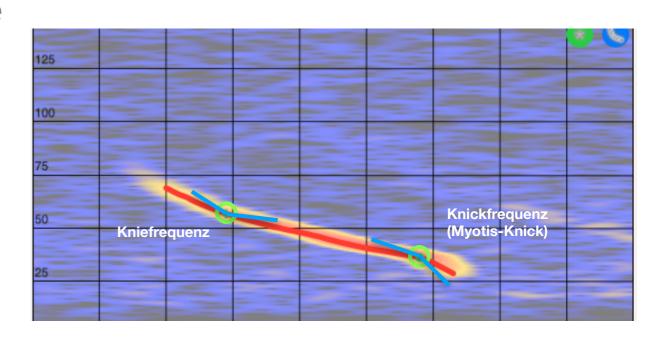
RUFTYPEN


- >50 Arten in Europa
- > ~25 Arten in Deutschland aus 9 Gattungen


IDENTIFIKATION VON ARTEN: MESSWERTE

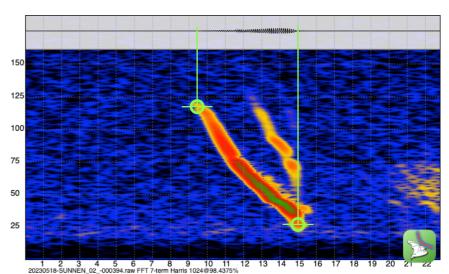
- Einfache Parameter
 - Rufdauer, Startfrequenz, ...
 - meßbar durch Menschen
- Überlappung mancher Arten

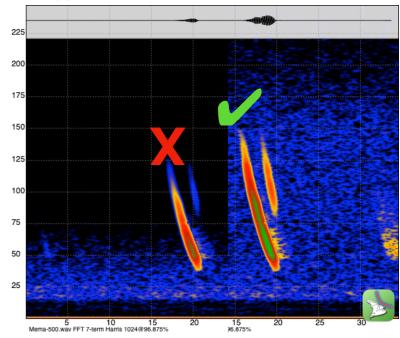

VARIABILITÄT UND ÜBERLAPPUNG

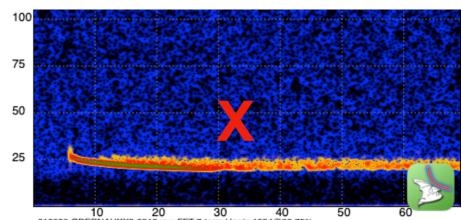


IDENTIFIKATION VON ARTEN: MESSWERTE

- Einfache Parameter
 - Rufdauer, Startfrequenz, ...
 - meßbar durch Menschen
- Überlappung mancher Arten
 - Kombination von Parametern
 - zusätzlich abgeleitete Messwerte
 - Vermessung teils schwierig

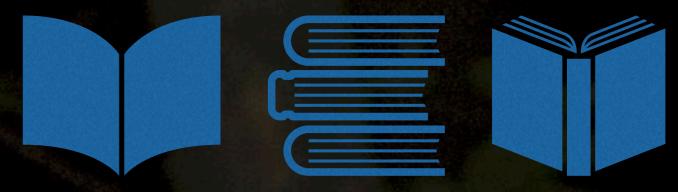






IDENTIFIKATION VON ARTEN: VERMESSUNG

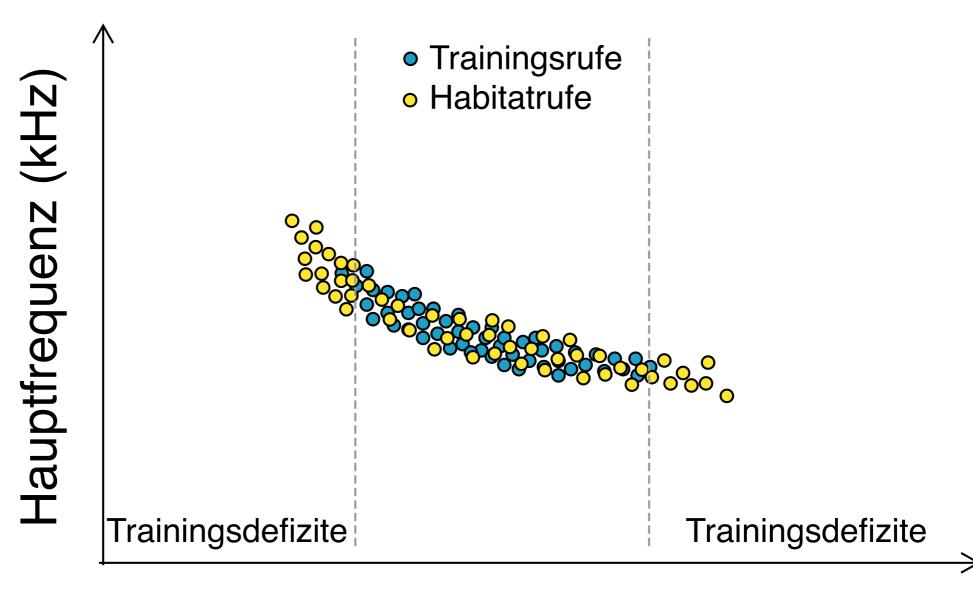
- Messung
 - Sonagramm: Frequenzen/Zeit
 - Spektrum: Frequenzen
- "Bildqualität" ist stark korreliert mit Aufnahmequalität
 - schlechte Aufnahme, schlechtes Sonagramm
 - großer Einfluß der Technik (Hardware und Software)



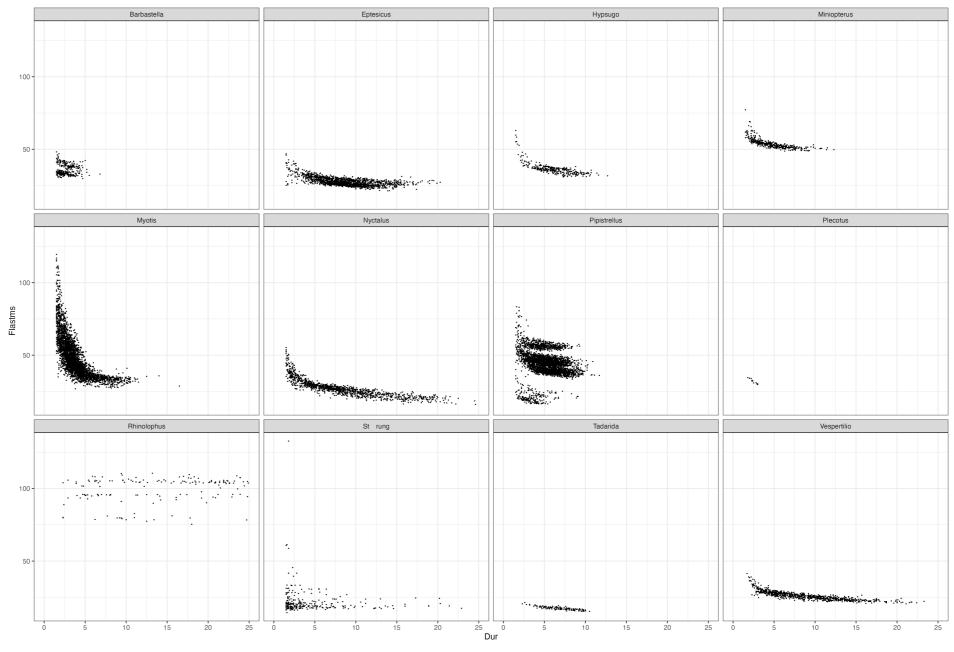
REFERENZEN-TRAINING

RUF-REFERENZEN UND KI-TRAINING

- Referenz-Rufe oder auch ground truth
 - manuelle Auswahl, gute Qualität
 - "typische" Rufe des gesamten Rufspektrums
- Generelle Probleme
 - Woher kommen die Rufe?
 - Wie stellt man Art bei Freiland-Rufen sicher?
 - Ist das Rufspektrum gut abgebildet?
- Gefahr
 - Zirkelschlüsse bei der sicheren Artbestimmung
 - Messmethode nicht eindeutig

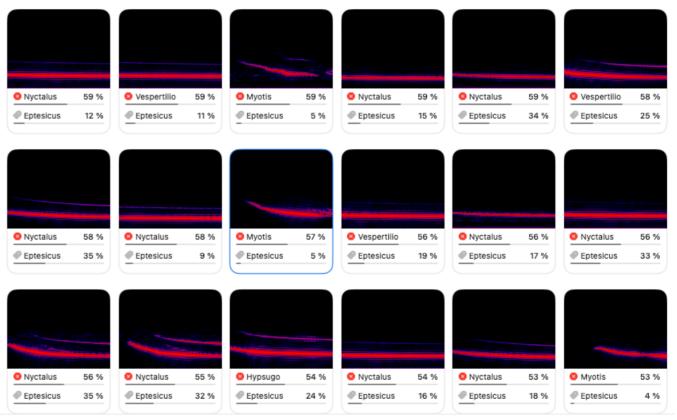


- Sammlung von typischen Rufen im Freiland
 - nicht nur oder nur wenig: Netzfang, Quartierausflug



Vollständiges Rufspektrum?

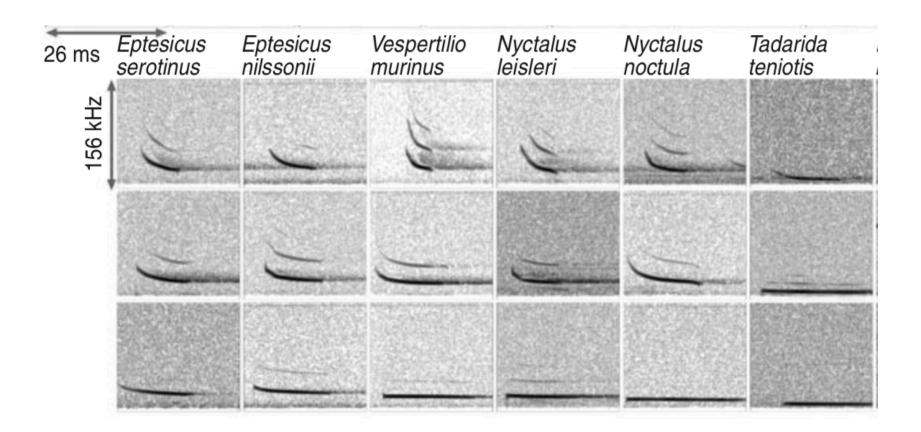
Vollständiges Rufspektrum?



- Training
- Training
- Training
- Ergebnis:KI-ModelloderNachschlagetabelle

Class ^ Co	unt	Correct	False Positives	False Negatives	Precision	Recall	F1 Score
Barbastella	102	64	14	38	82 %	63 %	0,71
Eptesicus	423	339	116	84	75 %	80 %	0,77
Hypsugo	154	99	29	55	77 %	64 %	0,7
Myotis	1147	1095	121	52	90 %	95 %	0,93
Nyctalus	409	305	74	104	80 %	75 %	0,77
Pipistrellus	611	589	49	22	92 %	96 %	0,94
Plecotus	72	44	3	28	94 %	61 %	0,74
Stoerung	43	36	8	7	82 %	84 %	0,83
Vespertilio	183	119	40	64	75 %	65 %	0,7

84 images labeled as 'Eptesicus' were incorrectly classified


KI-ERGEBNISSE

IDENTIFIKATION VON ARTEN

Intra- und Interspezifische Variabilität

Obrist, M. K., Boesch, R., & Flückiger, P. F. (2004). Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach.

IDENTIFIKATION VON ARTEN

		=	_	_	_					_ =																	<u> </u>	
>	Assigned to species	Myotis bechsteinii	Myotis blythii	s brandtii	s capaccinii	Myotis daubentonii	Myotis emarginatus	Myotis myotis	Myotis mystacinus	Myotis nattereri	Barbastella barbastellus	Plecotus auritus	Plecotus austriacus	go savii	Pipistrellus kuhlii	Pipistrellus nathusii	Pipistrellus pipistrellus	Pipistrellus pygmaeus	Miniopterus schreibersii	icus serotinus	Eptesicus nilssonii	Vespertilio murinus	Nyctalus leisleri	Nyctalus noctula	Tadarida teniotis	Rhinolophus hipposideros	Rhinolophus ferrumequinum	correct classifications
	From species	Myoti	Myoti	Myotis	Myotis	Myoti	Myoti	Myoti	Myoti	Myoti	Barba	Plecoi	Plecoi	Hypsugo	Pipist	Pipist	Pipist	Pipist	Minio	Eptesicus	Eptes	Vespe	Nycta	Nycta	Tadan	Rhino	Rhino	correc
	Myotis bechsteinii				2%	6%	2%		28%	1%		40/																31%
	M. blythii			2%	40/	2%	4%	1%	16%	4%		1%			40/	40/												64%
	M. brandtii	19%	1%	28%	4%	9%	1%		28%	0%					1%	1%												28%
	M. capaccinii	1%			68%	5%	5%	1%	5%		40/	00/			8%	4%												68%
	M. daubentonii	3%	00/		14%	60%	0%	7%	10%		1%	2%			0%													60%
	M.emarginatus	1%	2%	1%	7%	60/	86%	700/	4%	20/		00/	10/		0%								40/					86%
	M. myotis	1%	6%	3%	1%	6%	70/	73%	2%	3%		0%	1%			00/							4%					73%
	M. mystacinus			5%	3%	19%	7%		36%	000/						0%												36%
	M. nattereri	0%	12%	2%				4%	1%	82%																		82%
	average Myotis										070/	10/	60/	20/	20/								10/					59%
	Barbastella barbastellus	0%	10/						0%	1%	87%	1% 85%	6% 6%	3%	2%							0%	1% 1%					87%
	Plecotus auritus P. austriacus	0%	1%					0%	0%	170	6% 5%		89%									0%	1 70					85%
					2%			U70			5% 6%	070		90%	1%								1%					89% 90%
	Hypsugo savii Pipistrellus kuhlii				9%	0%					0 70					10%							1 70					81%
	P. nathusii				3%	0 70			0%					0 70	18%													80%
	P. pipistrellus				1%				0 70						10 /0		95%		4%									95%
	P. pygmaeus				1 /0											0 /0	30 /0	94%	6%									94%
	Miniopterus schreibersii																4%	6%	89%								1%	89%
	Eptesicus serotinus							1%									470	070		69%	5%	10%	10%	5%			170	69%
	E. nilssonii							1%													90%	1%	2%	1%				90%
	Vespertilio murinus							1%			1%		0%							10%	00 / 0	72%						72%
	Nyctalus leisleri				3%			3%			1%		070							41%			27%					27%
	N. noctula				0,0			0%			170		1%							13%	1%		5%					75%
	Tadarida teniotis							0,0					0%							1070	1,70	0,0	0,0		97%			97%
	Rhinolophus hipposideros												0,0											_,,		100%		100%
	R. ferrumequinum																	0%										100%
	average non-Myotis																	5,0									10,0	84%
	Total average																											75%

- Manuelle versus automatische Artbestimmung
 - ▶ Jennings et al. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks.
 - Fritsch, G., & Bruckner, A. (2014). Operator bias in software-aided bat call identification.

- Manuelle versus automatische Artbestimmung
 - In Jennings et al. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks.
 - Fritsch, G., & Bruckner, A. (2014). Operator bias in software-aided bat call identification.

Table 1. Summary classification rates of bat recordings, assessed by using sensitivity (recordings correctly classified) and positive predictive power (PPP; predictions that were actually recordings of that species) for humans and artificial neural networks (ANNs).

		Humans			ANNs	
Taxon	N^*	Number of confusion species	Median percent sensitivity	Median percent PPP	Percent sensitivity	Percent PPP
Pipistrellus pipistrellus	3	1	100 (100–100)	100 (100–100)	100	100
Pipistrellus pygmaeus	2	2		100 (100–100)		100
Pipistrellus (to genus)	5	_		100 (100–100)		100
Nyctalus leisleri	3	5		67 (0–100)		100
Nyctalus noctula	3	2		75 (75–100)		86
Nyctalus (to genus)	6	_		100 (80–100)		100
Eptesicus serotinus	4	7		67 (53–75)		78^{\dagger}

Note: Values in parentheses are interquartile ranges.

^{*}The number of recordings in the data set.

[†]The classification rate of the ANNs was above the interquartile range of that of the human participants.

- Manuelle versus automatische Artbestimmung
 - In Jennings et al. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks.
 - Fritsch, G., & Bruckner, A. (2014). Operator bias in software-aided bat call identification.

Table 1. Summary classification rates of bat recordings, assessed by using sensitivity (recordings correctly classified) and positive predictive power (PPP; predictions that were actually recordings of that species) for humans and artificial neural networks (ANNs).

		Humans			ANNs	
Taxon	N^*	Number of confusion species	Median percent sensitivity	Median percent PPP	Percent sensitivity	Percent PPP
Pipistrellus pipistrellus	3	1	100 (100–100)	100 (100–100)	100	100
Pipistrellus pygmaeus	2	2		100 (100–100)		100
Pipistrellus (to genus)	5	_	100 (100-100)	100 (100–100)	100	100
Nyctalus leisleri	3	5	33 (0-67)	67 (0–100)	33	100
Nyctalus noctula	3	2		75 (75–100)		86
Nyctalus (to genus)	6	_		100 (80–100)		100
Eptesicus serotinus	4	7		67 (53–75)		78^{\dagger}

Note: Values in parentheses are interquartile ranges.

^{*}The number of recordings in the data set.

[†]The classification rate of the ANNs was above the interquartile range of that of the human participants.

- Manuelle versus automatische Artbestimmung
 - In Jennings et al. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks.
 - Fritsch, G., & Bruckner, A. (2014). Operator bias in software-aided bat call identification.
- Software für automatische Artbestimmung
 - Russo, D., & Voigt, C. C. (2016). The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis.
 - Rydell et al. (2017). Testing the performances of automated identification of bat echolocation calls: A request for prudence.
 - Brabant et al. (2018). Comparing the results of four widely used automated bat identification software programs to identify nine bat species in coastal Western Europe.

- Manuelle versus automatische Artbestimmung
 - In Jennings et al. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks.
 - Fritsch, G., & Bruckner, A. (2014). Operator bias in software-aided bat call identification.

Software für automatische Artbestimmung

	Software A				Sof	Software B			Software C			Software D				
Species		species	Right species (%)	Wrong species (%)	NOLD	٠.	Wrong species (%)	NoID (%)	Right species (%)	Wrong species (%)	NoID (%)		Wrong species group (%)	RIGHT	Wrong species (%)	NoID (%)
Total (n=148)	88.0	12.0	77.3	22.7	0.0	31.3	66.7	2.0	71.3	10.7	18.0	85.3	14.7	65.3	34.7	0.0

Brabant et al. (2018). Comparing the results of four widely used automated bat identification software programs to identify nine bat species in coastal Western Europe.

AUTOMATISCHE RUFBESTIMMUNG: SONAGRAMM-KI

Open-source Bild-KI (Runkel 2021)


Class	Item Count P	recision v Recall	l
Enil	12	88 %	58 %
Vmur	14	73 %	57 %
Nlei	8	67 %	50 %
Eser	7	60 %	86 %
Nnoc	9	53 %	89 %

https://github.com/vrunkel/CoreMLBats-model-calls
https://github.com/vrunkel/CoreMLBats

AUTOMATISCHE RUFBESTIMMUNG: SONAGRAMM-KI

Open-source Bild-KI (Runkel 2021)

AUTOMATISCHE RUFBESTIMMUNG: SONAGRAMM-KI

Schwab et al. (2022): Automated bat call classification using deep convolutional neural networks. Bioacoustics. 10.1080/09524622.2022.2050816

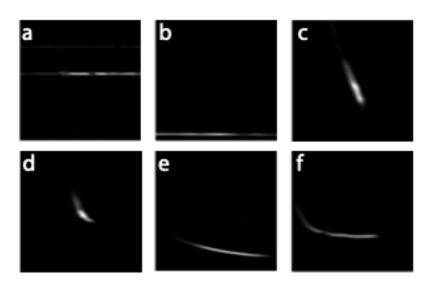


Table 2. Classification accuracy of the network architectures for the 18 included species on the test set (four different CNN topologies).

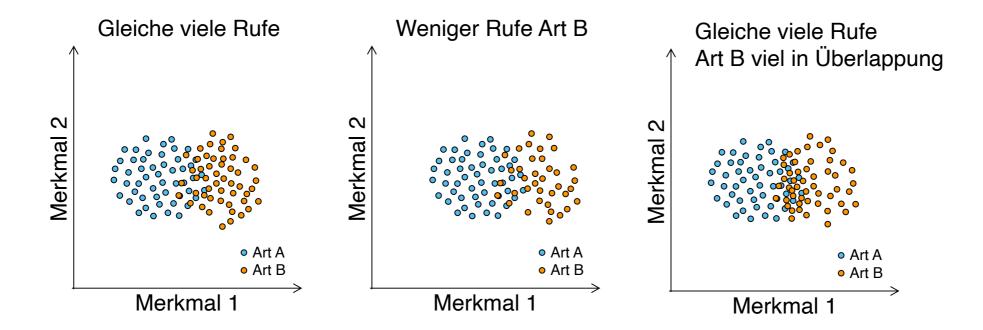
	CNN T	ype		
Species	CNN6	CNN10	CNNIncept	CNNResNet
Barbastella barbastellus	93.41	95.36	99.85	100.0
Eptesicus nilssonii	79.97	82.84	92.93	96.21
Eptesicus serotinus	64.59	67.77	77.38	93.14
Myotis bechsteinii	89.91	92.84	97.94	100.0
Myotis brandtii/Myotis mystacinus	88.61	91.89	96.64	96.19
Myotis dasycneme	11.47	22.48	57.98	93.21
Myotis daubentonii	69.25	76.80	75.93	97.73
Myotis emarginatus	94.94	97.92	99.94	98.29
Myotis myotis	89.58	92.92	97,92	99.57
Myotis nattereri	94.78	97.82	99.91	98.11
Nyctalus leisleri	74.79	80.74	90,02	94.62
Nyctalus noctula	94.85	97.97	99,95	97.93
Pipistrellus kuhlii	78.76	80.41	92.20	92.97
Pipistrellus nathusii	79.61	82.69	92.59	88.90
Pipistrellus pipistrellus	88.95	92.01	97.66	98.54
Pipistrellus pygmaeus	94.91	97.92	99.97	98.10
Plecotus austriacus/auritus	85.25	90.00	96.30	97.83
Vespertilio murinus	79.21	82.70	92.73	93.31
Mean Accuracy	80.71	84.62	92.10	96.13

KONTROLLE DER KI

UNABHÄNGIGE VALIDIERUNG

- Vergleich bestehender und neuer Systeme
 - unabhängig
 - neutrale Einordnung von Ergebnissen
- Validierungs-Datensatz
 - gesicherte Habitataufnahmen
 - möglichst gute Abdeckung der Variabilität
 - > seit 2024 erster öffentlicher Datensatz verfügbar: https://batident.eu/downloads/ValidationSet.zip

BEWERTUNG VON QUALITÄT

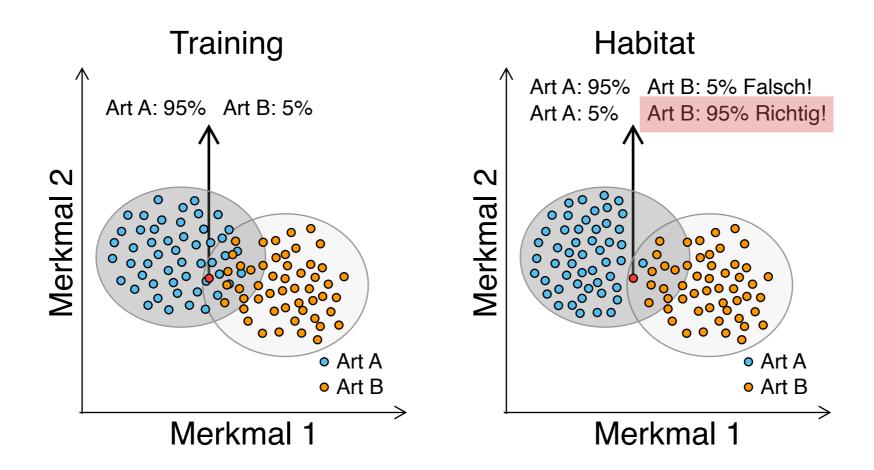

- Genauigkeit / Fehler
 - je Gruppe, Gattung und Art
 - Falsch-positive / falsch-negative
- Einzelaufnahmen
- Große Datensätze
 - Geschwindigkeit / Aufwand

Gute Informationen zur Bewertung (ecoObs 2009): https://ecoobs.de/herunterladen/leitfaden-die-automatische-rufanalyse-mit-dem-batcorder-system/?tmstv=1758868547

FEHLERQUELLEN

Rufspektrum nicht adäquat abgedeckt

Vorhersage	A 4 A	A D	falsch-negativ	
Wahr	Art A	Art B	Sensitivität	n
Art A	450	50	10%	500
Art B	50	450	10%	500
falsch-positiv	10%	10%		
Wirksamkeit	10%	10%		


Vorhersage Wahr	Art A	Art B	falsch-negativ Sensitivität	n
Art A	450	50	10%	500
Art B	20	180	10%	200
falsch-positiv Wirksamkeit	4,26%	21,74%		

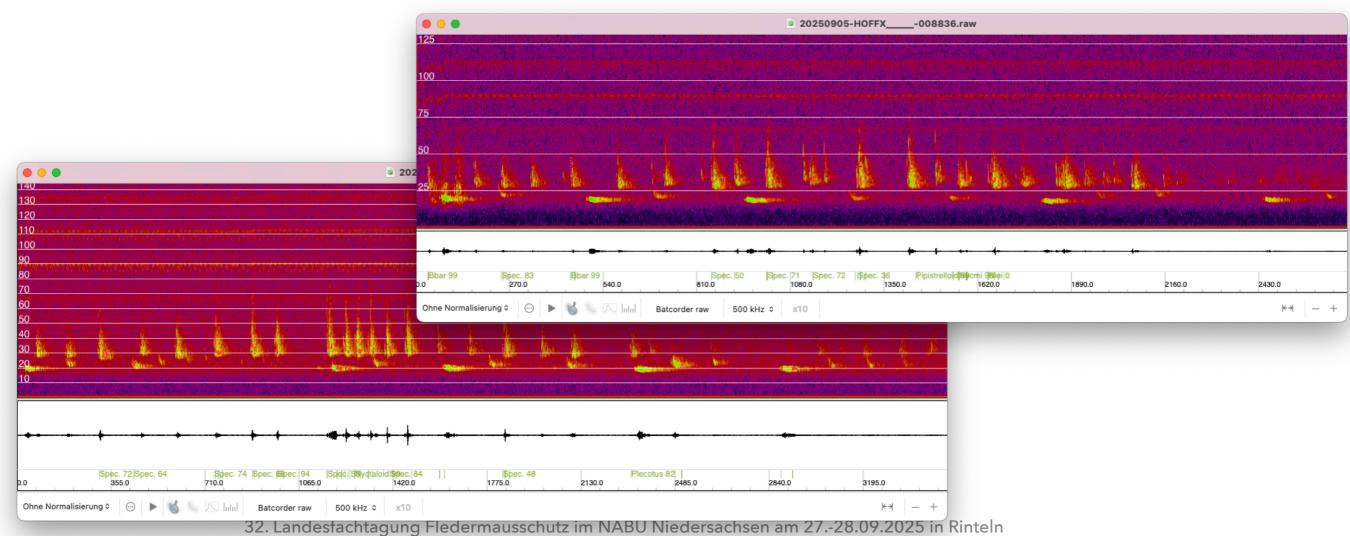
Vorhersage	Art A	Art B	falsch-negativ	n
Wahr	AILA	AILD	Sensitivität	n
Art A	450	50	10%	500
Art B	150	350	30%	500
falsch-positiv	25%	12,50%		
Wirksamkeit	2370	12,5070		

WAHRSCHEINLICHKEIT ALS MAßZAHL?

- Training-/Habitat: Unterschiedliche Ruftypen
 - Standorte unterscheiden sich
 - Geografische Variabilität

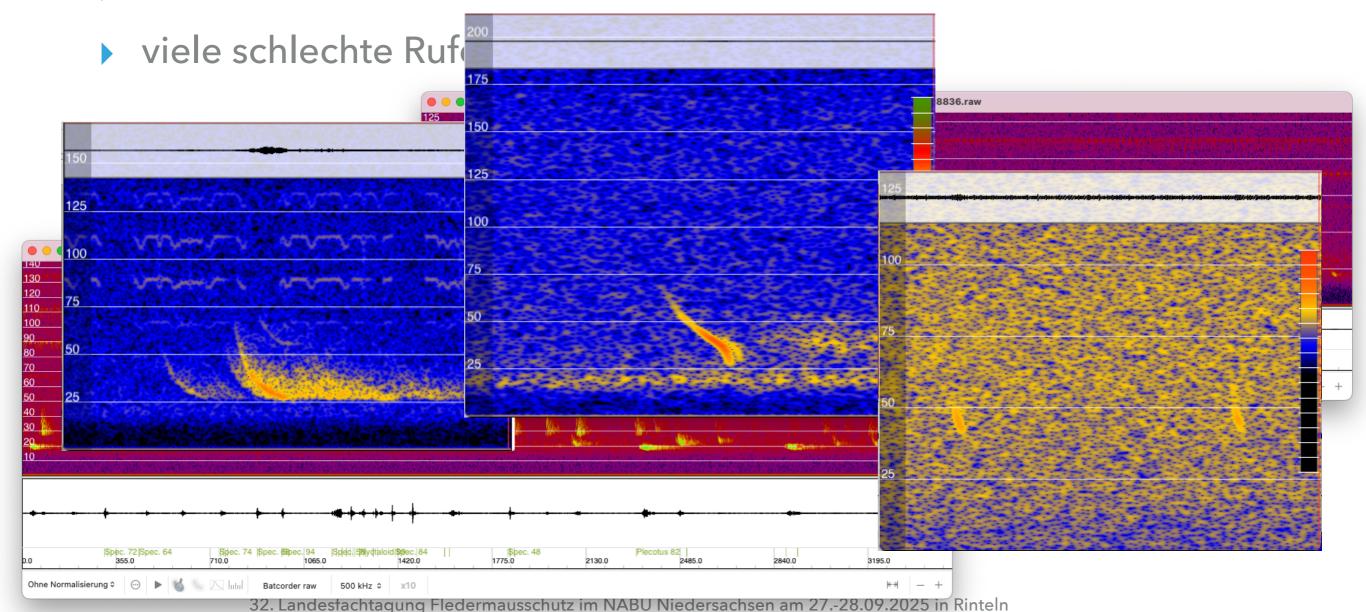
FEHLER ERKENNEN

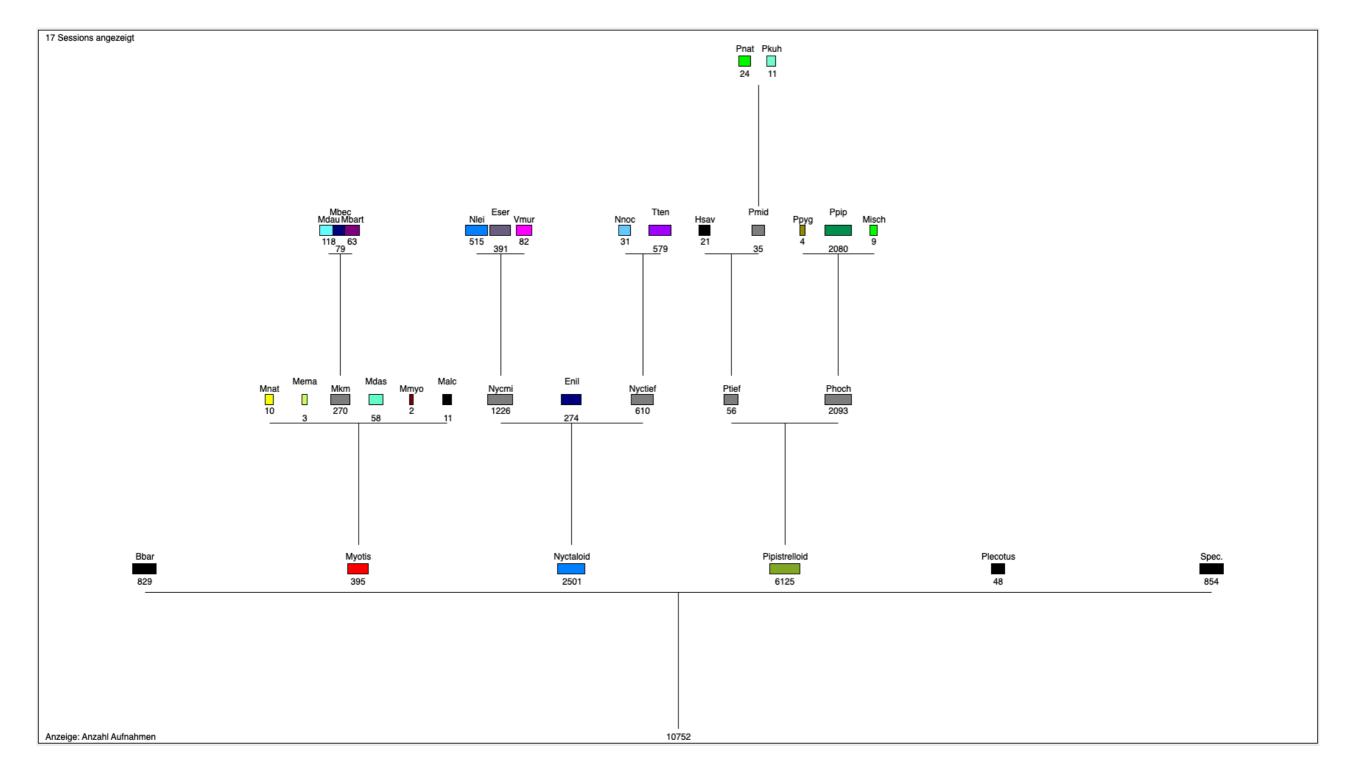
- Fehler einfach erkennen, wenn
 - schlechte Aufnahmequalität
 - Art nicht am Standort / Region nachgewiesen
- Fehler nur als Profi erkennen, wenn
 - seltene, aber dennoch charakteristische Rufe
- Fehler selbst als Profi nicht erkennen, wenn
 - Rufe untypisch und selten
 - Rufe beinahe 100% überlappend mit anderer Art



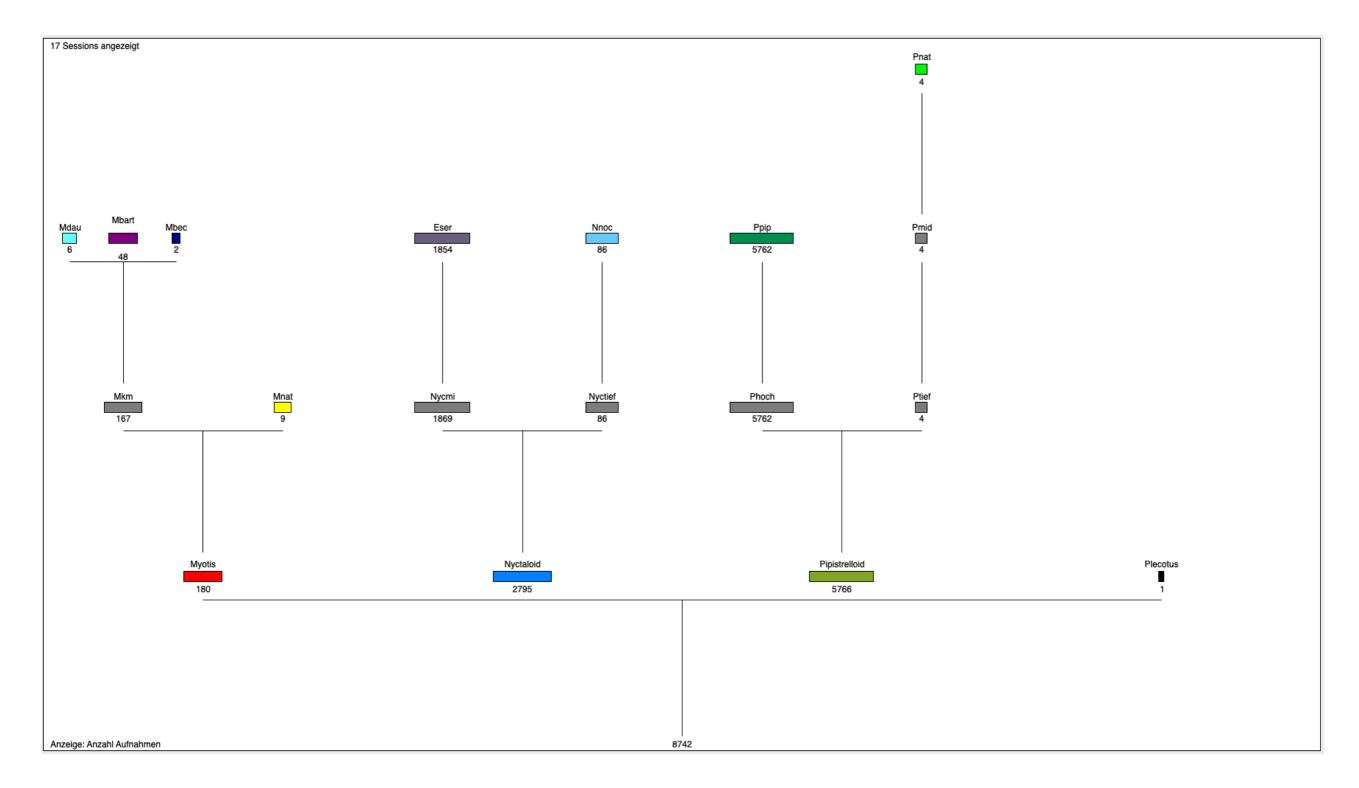
TÄGLICHE PRAXIS

GROßE DATENMENGEN – AUTOMATISCHE ERFASSUNG


- Monitoring
 - mehrere 100.000 Aufnahmen
 - viele schlechte Rufe in starker Überzahl

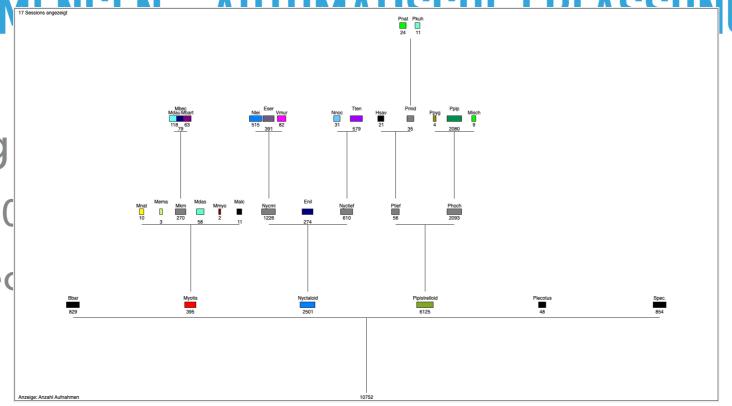

GROßE DATENMENGEN - AUTOMATISCHE ERFASSUNG

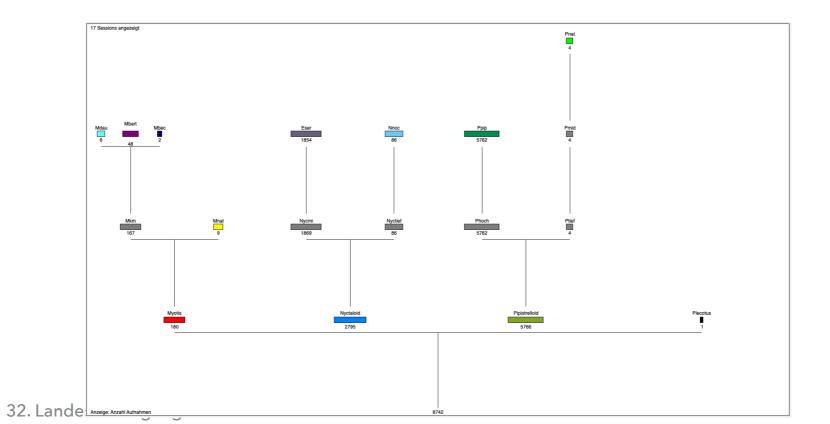
- Monitoring
 - mehrere 100.000 Aufnahmen



GROßE DATENMENGEN - AUTOMATISCHE ERFASSUNG

GROßE DATENMENGEN - AUTOMATISCHE ERFASSUNG




GROSE DATENNATION AUTOMATICALIF POLY OF THE PROPERTY OF THE PR

Monitoring

mehrere 10

viele schled

GROßE DATENMENGEN - MANUELLE KONTROLLE

- Manuelle Kontrollen sind nötig
 - Prüfung seltener Arten
 - Korrektur Reduktion auf Gattung / Rufgruppe
- Problem: eigene Kenntnisse
 - Was man nicht kennt, kann man nicht kontrollieren
 - Im Zweifel: Vorsichtige Zurückhaltung
 - Falsche Arten sind Fehler, richtige Gattungen sind keine Fehler

IST DIE KI "GUT" GENUG?

- Machine learning wirklich bessere Ergebnisse?!
 - Variabilität und Überlappung bleiben das Problem
 - aber: Fehler objektiv, daher immer gleich
- Kombination von Verfahren
 - diverse automatische Algorithmen
 - ergänzt durch "schnelle" manuelle Kontrolle
- Welches Ziel?
 - Jede Aufnahme Artgenau bestimmen ODER
 - Daten hinreichend sicher bestimmen für Modellierungen

WEITERE FRAGEN RUNKEL@VOLKERRUNKEL.DE

DANKE FÜR IHRE AUFMERKSAMKEIT

FOLIEN VERFÜGBAR UNTER
HTTPS://VOLKERRUNKEL.DE/PROJECT-3.HTML

